ReST는 multi-camera multi-object tracking task를 위한 모델이다. 데이터셋은 WILDTRACK을 사용했다. WILDTRACK은 고정된 7개의 카메라가 서로 중첩된느 영역을 보고있고, 같은 사람에는 같은 index가 라벨링 되어있는 데이터 셋이다. Multi object tracking(MOT)에서 일반적으로 일어나는 문제가 occlusion 등의 이유로 인한 ID switch가 일어난다는 것이다. 이러한 것을 보완하고자 Multi-camera multi object tracking(MCMOT)이 등장하였다. 특정 카메라에서 인식되지 않는 객체를 다른 카메라에서 정보를 얻어 singlet tracker를 사용하지 않고 시간 상에서 같은 object를 찾는 것이 특징이다. ..
이 논문은 AI City Challenge 23 Track 1에서 1등을 한 팀의 논문이다. Track 1은 Multi-Camera Peaple Tracking으로 여러 카메라에서 사람을 인식하고 같은 사람은 카메라에 상관없이 하나의 ID로 tracking하는 task이다. WILDTRACK이나 MMP-TRACK과 같은 다른 Multi-Camera tracking 데이터 셋 처럼 intrinsic과 extrinsic을 제공하지는 않고, 사람들이 움직이는 것을 위에서 바라본 bird-eye view map을 제공한다. 이미 전체 영상이 있는 챌린지여서 offline으로 작동하며, 고정된 카메라들로 이루어진 데이터셋을 다룬다. Overall Pipeline 그림2에서 볼 수 있듯 크게 Single-camer..
- design pattern
- Deep learning
- DSP
- Generative Model
- 신호처리
- 운영체제
- image
- ML
- depth
- TRACKING
- 디지털신호처리
- Operating System
- Raspberry Pi
- controllable GAN
- machine learning
- Depth estimation
- conditional GAN
- 딥러닝
- ML Pipeline
- deeplearning
- OS
- MLOps
- Building Basic GAN
- feature
- pcb
- mode collapse
- 3d object detection
- AI
- depthmap
- Gan
- Total
- Today
- Yesterday
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |