※ Coursera의 Build Basic Generative Adversarial Networks (GANs) 강의를 듣고 작성한 글입니다. Week4에서는 conditional GAN과 controllable GAN에 대해 학습합니다. Conditional & Unconditional GAN class가 있어서 class에 해당하는 이미지를 생성하는 것이 conditional GAN입니다. Unconditional이라면 어떤 class의 이미지가 생성될지 모르는 것이죠. Conditinoal gan은 one-hot vector를 사용하여 class에 대한 정보를 넣어줍니다. generator에는 1차원의 noise vector가 들어가므로 one-hot vector를 noise vector 뒤에 co..
※ Coursera의 Build Basic Generative Adversarial Networks (GANs) 강의를 듣고 작성한 글입니다. Week3에서는 GAN의 문제점과 새로운 loss에 대해 알아봅니다. Mode Collapse 분포에서 가장 높은 부분을 mode라고 합니다. 분포 내에서 여러개의 mode를 가질 수 있고, 일반적인 데이터셋은 대부분 여러개의 mode를 가집니다. MNIST로 GAN을 학습한다고 가정하겠습니다. 0~9의 각 숫자마다 mode가 존재하게 됩니다. 이때 generator에서 여러 숫자를 생성해 냈다고 해봅시다. 그리고 discriminator에서 판단한 결과 1과 7을 제외한 모든 숫자들이 fake로 판단되었습니다. 그러면 generator는 다른 숫자를 잘 생성하려..
※ Coursera의 Build Basic Generative Adversarial Networks (GANs) 강의를 듣고 작성한 글입니다. Week 2에서는 GAN과 관련된 구성 요소들을 알아봅니다. Activations 딥러닝 layer는 linear한 연산들로 이루어져 있습니다. Linear한 연산은 하나의 linear연산으로 계산해 낼 수 있으므로 결국 하나의 연산과 같아지는 일이 발생합니다. 이러한 계산에 복잡도를 더하기 위해 non-linear를 더해주어야 합니다. 이러한 non-linear연산은 backpropagation에 미분이 사용되므로 미분가능해야합니다. 이러한 조건을 만족하여 layer에서 activation을 구하기 위해 사용하는 함수를 activation function이라고..
※ Coursera의 Build Basic Generative Adversarial Networks (GANs) 강의를 듣고 작성한 글입니다. Week 1에서는 GAN의 기본적인 구조에 대해 학습합니다. Generative Model 이란? 이름 그대로 무언가를 생성하는 모델을 generative model이라고 말합니다. 이를 discriminative model과 비교해볼게요. Discriminative model은 개와 고양이를 나누듯 class를 나누는 작업을 수행합니다. 어떤 이미지 feature가 input으로 들어가면 개인지, 고양이인지하는 class로 output이 나온게 됩니다. Generative model은 이미지를 생성해주는 모델입니다. input과 output이 generative..
- 신호처리
- Deep learning
- 딥러닝
- DSP
- Depth estimation
- Gan
- Operating System
- design pattern
- feature
- controllable GAN
- 디지털신호처리
- depth
- pcb
- Raspberry Pi
- Building Basic GAN
- 3d object detection
- OS
- deeplearning
- 운영체제
- ML Pipeline
- machine learning
- AI
- mode collapse
- Generative Model
- ML
- MLOps
- TRACKING
- conditional GAN
- depthmap
- image
- Total
- Today
- Yesterday
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |